Goal-oriented adaptive finite element methods for elliptic problems revisited
نویسندگان
چکیده
منابع مشابه
Unified Multilevel Adaptive Finite Element Methods for Elliptic Problems
Many elliptic partial differential equations can be solved numerically with near optimal efficiency through the uses of adaptive refinement and multigrid solution techniques. It is our goal to develop a more unified approach to the combined process of adaptive refinement and multigrid solution which can be used with high order finite elements. The basic step of the refinement process is the bis...
متن کاملAdaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on th...
متن کاملConvergence of goal-oriented adaptive finite element methods for semilinear problems
In this article we develop convergence theory for a class of goal-oriented adaptive finite element algorithms for second order semilinear elliptic equations. We first introduce several approximate dual problems, and briefly discuss the target problem class. We then review some standard facts concerning conforming finite element discretization and error-estimate-driven adaptive finite element me...
متن کاملConvergence of Goal-oriented Adaptive Finite Element Methods for Nonsymmetric Problems
In this article we develop convergence theory for a class of goal-oriented adaptive finite element algorithms for second order nonsymmetric linear elliptic equations. In particular, we establish contraction and quasi-optimality results for a method of this type for second order Dirichlet problems involving the elliptic operator Lu = ∇ · (A∇u)− b · ∇u− cu, with A Lipschitz, almost-everywhere sym...
متن کاملMixed Finite Element Methods for Elliptic Problems*
This paper treats the basic ideas of mixed finite element methods at an introductory level. Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the mathematical prerequisites are kept to a minimum. A classification of variational principles and of the corresponding weak formulations and Galerkin methods—displacement, equilibrium, and mixed—is giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2015
ISSN: 0377-0427
DOI: 10.1016/j.cam.2015.03.031